Singular Weyl–Titchmarsh–Kodaira theory for Jacobi operators
نویسندگان
چکیده
We develop singular Weyl–Titchmarsh–Kodaira theory for Jacobi operators. In particular, we establish existence of a spectral transformation as well as local Borg–Marchenko and Hochstadt–Liebermann type uniqueness results.
منابع مشابه
Singular Schrödinger Operators as Self-adjoint Extensions of N-entire Operators
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be nentire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this ...
متن کاملUniqueness results for one-dimensional Schrödinger operators with purely discrete spectra
We provide an abstract framework for singular one-dimensional Schrödinger operators with purely discrete spectra to show when the spectrum plus norming constants determine such an operator completely. As an example we apply our findings to prove new uniqueness results for perturbed quantum mechanical harmonic oscillators. In addition, we also show how to establish a Hochstadt–Lieberman type res...
متن کاملSturm–liouville Operators with Measure-valued Coefficients
We give a comprehensive treatment of Sturm–Liouville operators whose coefficients are measures including a full discussion of self-adjoint extensions and boundary conditions, resolvents, and Weyl–Titchmarsh–Kodaira theory. We avoid previous technical restrictions and, at the same time, extend all results to a larger class of operators. Our operators include classical Sturm– Liouville operators,...
متن کاملWeyl–titchmarsh Theory for Sturm–liouville Operators with Distributional Coefficients
We systematically develop Weyl–Titchmarsh theory for singular differential operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential expressions of the type
متن کاملWeyl–titchmarsh Theory for Sturm–liouville Operators with Distributional Potentials
We systematically develop Weyl–Titchmarsh theory for singular differential operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential expressions of the type τf = 1 r ( − ( p[f ′ + sf ] )′ + sp[f ′ + sf ] + qf ) , where the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a, b), with p 6= 0, r > 0 a.e. on (a, b), and p−1, q, r, s ∈ Lloc((a, b); dx...
متن کامل